Значение симметрии в познании природы. Симметрия в природе, искусстве и литературе. Симметрия в природе Симметрия в жизни и природе

Взгляните на лица окружающих вас людей: один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая -- менее; одно ухо выше, другое ниже. К сказанному добавим, что человек больше пользуется правым глазом, чем левым. Понаблюдайте-ка, например, за людьми, которые стреляют из ружья или лука.

Из приведенных примеров видно, что в строении тела человека, его привычках ясно выражено стремление резко выделить какое-либо направление -- правое или левое. Это не случайность. Подобные явления можно отметить также и у растений, животных и микроорганизмов.

Ученые давно обратили на это внимание. Еще в XVIII в. ученый и писатель Бернарден де Сен Пьер указывал, что все моря наполнены одностворчатыми брюхоногими моллюсками бесчисленного множества видов, у которых все завитки направлены слева направо, подобно движению Земли, если поставить их отверстиями к северу и острыми концами к Земле.

Но прежде чем приступить к рассмотрению явлений подобной асимметрии, мы выясним сначала, что такое симметрия.

Для того чтобы разобраться хотя бы в главных результатах, достигнутых при изучении симметрии организмов, нужно начать с основных понятий самой теории симметрии. Вспомните, какие тела в быту обычно считают равными. Только такие, которые совершенно одинаковы или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два верхних лепестка на рисунке 1. Однако в теории симметрии, помимо совместимого равенства, выделяют еще два вида равенства -- зеркальное и совместимо-зеркальное. При зеркальном равенстве левый лепесток из среднего ряда рисунка 1 можно точно совместить с правым лепестком лишь после предварительного отражения в зеркале. А при совместимо-зеркальном равенстве двух тел их можно совместить друг с другом как до, так и после отражения в зеркале. Лепестки нижнего ряда на рисунке 1 равны друг другу и совместимо, и зеркально.

Из рисунка 2 видно, что наличия одних равных частей в фигуре еще недостаточно, чтобы признать фигуру симметричной: слева они расположены незакономерно и мы имеем несимметричную фигуру, справа -- однообразно и мы имеем симметричный венчик. Такое закономерное, однообразное расположение равных частей фигуры относительно друг друга и называют симметрией.

Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

Для нас наиболее важны здесь повороты и отражения. Под поворотами понимают обычные повороты вокруг оси на 360°, в результате которых равные части симметричной фигуры обмениваются местами, а фигура в целом совмещается с собой. При этом ось, вокруг которой происходит поворот, называется простой осью симметрии. (Это название не случайно, так как в теории симметрии различают еще и различного рода сложные оси.) Число совмещений фигуры с самой собой при одном полном обороте вокруг оси называется порядком оси. Так, изображение морской звезды на рисунке 3 обладает одной простой осью пятого порядка, проходящей через его центр.

Это означает, что, поворачивая изображение звезды вокруг ее оси на 360°, мы сумеем наложить равные части ее фигуры друг на друга пять раз.

Под отражениями понимают любые зеркальные отражения -- в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркально равные половины, называется плоскостью симметрии. Рассмотрим на рисунке 3 цветок с пятью лепестками. Он обладает пятью плоскостями симметрии, пересекающимися на оси пятого порядка. Симметрию этого цветка можно обозначить так: 5*m. Цифра 5 здесь означает одну ось симметрии пятого порядка, а m -- плоскость, точка -- знак пересечения пяти плоскостей на этой оси. Общая формула симметрии подобных фигур записывается в виде n*m, где n -- символ оси. Причем он может иметь значения от 1 до бесконечности (?).

При изучении симметрии организмов было установлено, что в живой природе наиболее часто встречается симметрия вида n*m. Симметрию этого вида биологи называют радиальной (лучевой). Помимо показанных на рисунке 3 цветка и морской звезды, радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 3) и т. д.

С возникновением на нашей планете живой природы возникли и развились новые виды симметрии, которых до этого либо совсем не было, либо было немного. Это особенно хорошо видно на примере частного случая симметрии вида n*m, который характеризуется лишь одной плоскостью симметрии, делящей фигуру на две зеркально равные половины. В биологии этот случай называется билатеральной (двусторонней) симметрией. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 4).

Он характерен для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, многих моллюсков, ракообразных, насекомых, червей, а также многих растений, например цветков львиного зева.

Полагают, что такая симметрия связана с различиями движения организмов вверх-- вниз, вперед -- назад, тогда как их движения направо -- налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения в круговое. Поэтому не случайно активно подвижные животные двусторонне симметричны.

Билатеральность же неподвижных организмов и их органов возникает вследствие неодинаковости условий прикрепленной и свободной сторон. По-видимому, так обстоит дело у некоторых листьев, цветков и лучей коралловых полипов.

Здесь уместно отметить, что среди организмов до сих пор не встречалась симметрия, которая исчерпывается наличием только центра симметрии. В природе этот случай симметрии распространен, пожалуй, только среди кристаллов; сюда относятся, между прочем, и синие, великолепно вырастающие из раствора кристаллы медного купороса.

Другой основной вид симметрии характеризуется лишь одной осью симметрии n-го порядка и называется аксиальным или осевым (от греческого слова «аксон» -- ось). До самого последнего времени организмы, форме которых присуща аксиальная симметрия (за исключением простейшего, частного случая, когда n=1), биологам известны не были. Однако недавно обнаружено, что эта симметрия широко распространена в растительном мире. Она присуща венчикам всех тех растений (жасмина, мальвы, флоксов, фуксии, хлопчатника, желтой горечавки, золототысячника, олеандра и др.), края лепестков которых лежат друг на друге веерообразно по ходу часовой стрелки или против нее (рис. 5).

Эта симметрия присуща и некоторым животным, например медузе аурелиа инсулинда (рис. 6). Все эти факты привели к установлению существования нового класса симметрии в живой природе.

Объекты аксиальной симметрии -- это особые случаи тел диссимметрической, т. е. расстроенной, симметрии. От всех остальных объектов они отличаются, в частности, своеобразным отношением к зеркальному отражению. Если яйцо птицы и тело речного рака после зеркального отражения совсем не изменяют своей формы, то (рис. 7)

аксиальный цветок анютиных глазок (а), асимметрическая винтовая раковина моллюска (б) и для сравнения часы (в), кристалл кварца (г), асимметричная молекула (д) после зеркального отражения изменяют свою фигуру, приобретая ряд противоположных признаков. Стрелки действительных часов и зеркальных движутся в противоположных направлениях; строки на странице журнала написаны слева направо, а зеркальные -- справа налево, все буквы как будто вывернуты наизнанку; стебель вьющегося растения и винтовая раковина брюхоногого моллюска перед зеркалом идут слева вверх направо, а зеркальных -- справа вверх налево и т. д.

Что касается простейшего, частного случая осевой симметрии(n=1),о котором упоминается выше, то биологам он известен давно и называется асимметрическим. Для примера достаточно сослаться на картину внутреннего строения подавляющего большинства видов животных, включая и человека.

Уже из приведенных примеров нетрудно заметить, что диссимметрические объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения (руки человека, раковины моллюсков, венчики анютиных глазок, кристаллы кварца). При этом одна из форм (не важно, какая) называется правой П, а другая левой -- Л. Здесь очень важно уяснить себе, что правыми и левыми могут называться и называются не только известные в этом отношении руки или ноги человека, но и любые диссимметрические тела -- продукты производства людей (винты с правой и левой резьбой), организмы, неживые тела.

Обнаружение и в живой природе П-Л-форм поставило перед биологией сразу ряд новых и очень глубоких вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

Первый вопрос -- это вопрос о закономерностях формы и строения П- и Л-биологических объектов.

Совсем недавно ученые установили глубокое структурное единство диссимметрических объектов живой и неживой природы. Дело в том, что правизна-левизна свойство, одинаково присущее живым и неживым телам. Общими для них оказались и связанные с правизной-левизной различные явления. Укажем лишь на одно такое явление -- диссимметрическую изомерию. Она показывает, что в мире существует множество объектов различного строения, но при одном и том же наборе составляющих эти объекты частей.

На рисунке 8 показаны предсказанные, а затем и обнаруженные 32 формы венчиков лютика. Здесь в каждом случае число частей (лепестков) одно и то же -- по пяти; различно лишь их взаимное расположение. Стало быть, здесь перед нами пример диссимметрической изомерии венчиков.

В качестве другого примера могут служить объекты совершенно иной природы молекулы глюкозы. Их мы можем рассматривать наряду с венчиками лютика как раз из-за одинаковости законов их строения. Состав глюкозы следующий: 6 атомов углерода, 12 атомов водорода, 6 атомов кислорода. Этот набор атомов может быть распределен в пространстве весьма различно. Ученые считают, что молекулы глюкозы могут существовать по крайней мере в 320 различных видах.

Второй вопрос: насколько часто встречаются в природе П- и Л-формы живых организмов?

Самое важное в этом отношении открытие было сделано при изучении молекулярного строения организмов. Оказалось, что протоплазма всех растений, животных и микроорганизмов усваивает в основном только П-сахара. Таким образом, каждый день мы питаемся правым сахаром. Зато аминокислоты встречаются главным образом в Л-форме, а построенные из них белки -- в основном в П-форме.

Возьмем для примера два белковых продукта: яичный белок и овечью шерсть. Оба они -- «правши». Шерсть и яичный белок «левши» в природе до сих пор не найдены. Если бы удалось каким-либо образом создать Л-шерсть, т. е. такую шерсть, аминокислоты в которой были бы расположены по стенкам вьющегося влево винта, то проблема борьбы с молью была бы решена: моль может питаться только П-шерстью, точно так же, как люди усваивают только П-белок мяса, молока, яиц. И это нетрудно понять. Моль переваривает шерсть, а человек -- мясо посредством особых белков -- ферментов, по своей конфигурации тоже правых. И подобно тому как Л-винт нельзя ввернуть в гайки с П-резьбой, посредством П-ферментов невозможно переварить Л-шерсть и Л-мясо, если таковые были бы найдены.

Возможно, в этом же кроется загадка и болезни, известной под названием рака: есть сведения, что в ряде случаев раковые клетки строят себя не из правых, а из левых, не перевариваемых нашими ферментами белков.

Широко известный антибиотик пенициллин вырабатывается плесневым грибком только в П-форме; искусственно приготовленная Л-форма его антибиотически не активна. В аптеках продается антибиотик левомицетин, а не его антипод -- правомицетин, так как последний по своим лечебным свойствам значительно уступает первому.

В табаке содержится Л-никотин. Он в несколько раз более ядовит, чем П-никотин.

Если рассматривать внешнее строение организмов, то и здесь мы увидим то же самое. В подавляющем большинстве случаев целые организмы и их органы встречаются в П- или Л-форме. Задняя часть тела волков и собак при беге несколько заносится вбок, поэтому их разделяют на право- и левобегающих. Птицы-левши складывают крылья так, что левое крыло накладывается на правое, а правши -- наоборот. Некоторые голуби при полете предпочитают кружиться вправо, а другие влево. За это голубей издавна в народе делят на «правухов» и «левухов». Раковина моллюска фрутицикола лантци встречается главным образом в П-закрученной форме. Замечательно, что при питании морковью преобладающие П-формы этого моллюска прекрасно растут, а их антиподы -- Л-моллюски -- резко теряют в весе. Инфузория туфелька из-за спирального расположения на ее теле ресничек передвигается в капельке воды, как и многие другие простейшие, по лево завивающемуся штопору. Инфузории, вбуравливающиеся в среду по правому штопору, встречаются редко. Нарцисс, ячмень, рогоз и др.-- правши: их листья встречаются только в П-винтовой форме (рис. 9). Зато фасоль -- левша: листья первого яруса чаще бывают Л-формы. Замечательно, что по сравнению с П-листьями Л-листья больше весят, имеют большую площадь, объем, осмотическое давление клеточного сока, скорость роста.

Много интересных фактов может сообщить наука симметрии и о человеке. Как известно, в среднем на земном шаре примерно 3% левшей (99 млн.) и 97% правшей (3 млрд. 201 млн.). По некоторым сведениям, в США и на Африканском континенте левшей значительно больше, чем, например, в СССР.

Интересно отметить, что центры речи в головном мозгу у правшей расположены слева, а у левшей -- справа (по другим данным --в обоих полушариях). Правая половина тела управляется левым, а левая -- правым полушарием, и в большинстве случаев правая половина тела и левое полушарие развиты лучше. У людей, как известно, сердце на левой стороне, печень -- на правой. Но на каждые 7--12 тыс. человек встречаются люди, у которых все или часть внутренних органов расположены зеркально, т. е. наоборот.

Третий вопрос -- это вопрос о свойствах П- и Л-форм. Уже приведенные примеры дают понять, что в живой природе целый ряд свойств у П- и Л-форм неодинаковы. Так, на примерах с моллюсками, фасолью и антибиотиками была показана разница в питании, скорости роста и антибиотической активности у их П- и Л-форм.

Такая черта П- и Л-форм живой природы имеет очень большое значение: она позволяет с совершенно новой стороны резко отличить живые организмы от всех тех П- и Л-тел неживой природы, которые по своим свойствам так или иначе равны, например, от элементарных частиц.

В чем же причина всех этих особенностей диссимметрических тел живой природы?

Было установлено, что, выращивая микроорганизмы бациллюс микоидес на агар-агаре с П- и Л-соединениями (сахарозой, винной кислотой, аминокислотами), Л-колонии его можно превратить в П-, а П- в Л-формы. В ряде случаев эти изменения носили длительный, возможно, наследственный характер. Эти опыты говорят о том, что внешняя П- или Л-форма организмов зависит от обмена веществ и участвующих в этом обмене П- и Л-молекул.

Иногда превращения П- в Л-формы и наоборот происходят без вмешательства человека.

Академик В. И. Вернадский отмечает, что все раковины ископаемых моллюсков фузус антиквуус, найденные в Англии, левые, а современные раковины правые. Очевидно, причины, вызывавшие такие перемены, менялись в течение геологических эпох.

Конечно, смена видов симметрии по мере эволюции жизни происходила не только у диссимметрических организмов. Так, некоторые иглокожие когда-то были двустороннесимметричными подвижными формами. Затем они перешли к сидячему образу жизни и у них выработалась радиальная симметрия (правда, личинки их до сих пор сохранили двустороннюю симметрию). У части иглокожих, вторично перешедших к активному образу жизни, радиальная симметрия вновь заменилась билатеральной (неправильные ежи, голотурии).

До сих пор мы говорили о причинах, определяющих форму П- и Л-организмов и их органов. А почему эти формы встречаются не в равных количествах? Как правило, бывает больше либо П-, либо Л-форм. Причины этого не известны. Согласно одной очень правдоподобной гипотезе причинами могут быть диссимметрические элементарные частицы, например преобладающие в нашем мире правые нейтрино, а также правый свет, который в небольшом избытке всегда существует в рассеянном солнечном свете. Все это первоначально могло создать неодинаковую встречаемость правых и левых форм диссимметрических органических молекул, а затем привести к неодинаковой встречаемости П- и Л-организмов и их частей.

Таковы лишь некоторые вопросы биосимметрики -- науки о процессах симметризации и диссимметризации в живой природе.

«СИММЕТРИЯ - СИМВОЛ КРАСОТЫ, ГАРМОНИИ И СОВЕРШЕНСТВА»

Симметрия (др.-греч. — «соразмерность») — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. При этом подразумевается, что соразмерность - часть гармонии, правильного сочетания частей целого.

Гармония - греческое слово, обозначающее «согласованность, соразмерность, единство частей и целого». Внешне гармония может проявляться в мелодии, ритме, симметрии и пропорциональности. Во всем царит гармонии закон, И в мире всё суть ритм, аккорд и тон. Дж. Драйден

Совершенство - высшая степень, предел какого-либо положительного качества, способности, или мастерства.

«Свобода есть основной внутренний признак каждого существа, сотворенного по образу и подобию Божьему; в этом признаке заключено абсолютное совершенство плана творения». Н. А. Бердяев Симметрия - основополагающий принцип устройства мира.

Симметрия - распространенное явление, ее всеобщность служит эффективным методом познания природы. Симметрия в природе нужна, чтобы сохранять устойчивость. Внутри внешней симметрии лежит внутренняя симметрия построения, гарантирующая равновесие.

Симметрия - проявление стремления материи к надежности и прочности.

Симметричные формы обеспечивают повторяемость удачных форм, поэтому более устойчивы к различным воздействиям. Симметрия многообразна.

В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Асимметрия — (греч. α- — «без» и «симметрия») — отсутствие симметрии.

Симметрия в живой природе

Симметрия, как и пропорция, почиталась необходимым условием гармонии и красоты.

Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Существует очень сложная многоуровневая классификация типов симметрий. Здесь мы не будем рассматривать эти сложности классификации, отметим лишь принципиальные положения и вспомним простейшие примеры.

На самом верхнем уровне различают три типа симметрии: структурную, динамическую и геометрическую. Каждый из этих типов симметрии на следующем уровне делится на классическую и неклассическую.

Ниже располагаются следующие иерархические уровни. Графическое изображение всех уровней подчинения даёт разветвлённую дендрограмму.

В быту мы чаще всего сталкиваемся с так называемой зеркальной симметрией. Это такое строение объектов, когда их можно разделить на правую и левую или верхнюю и нижнюю половины воображаемой осью, называемой осью зеркальной симметрии. При этом половины, находящиеся по разные стороны оси - идентичны друг другу.

Отражение в плоскости симметрии . Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью.

Поворотная симметрия. Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Радиально-лучевой симметрией обладают цветы, грибы, деревья. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, - есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

Примеры радиальной симметрии.

Простейший вид симметрии зеркальная (осевая), возникающая при вращении фигуры вокруг оси симметрии.

В природе зеркальная симметрия характерна для растений и животных, которые произрастают или двигаются параллельно поверхности Земли. Например, крылья и туловище бабочки можно назвать эталоном зеркальной симметрии.

Осевая симметрия это результат поворота абсолютно одинаковых элементов вокруг общего центра. При этом они могут располагаться под любым углом и с различной частотой. Главное, чтобы элементы вращались вокруг единого центра. В природе, примеры осевой симметрии чаще всего можно найти среди растений и животных, которые растут или перемещаются перпендикулярно к поверхности Земли.

Также существует винтовая симметрия .

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Если рассматривать расположение листьев на ветке дерева мы заметим, что лист отстоит от другого, но и повернут вокруг оси ствола.

Листья располагаются на стволе по винтовой линии, чтобы не заслонять друг от друга солнечный свет. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

На основании этого можно сформулировать в несколько упрощенном и схематизированном виде (из двух пунктов) общий закон симметрии, ярко и повсеместно проявляющийся в природе:

1. Все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

2. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Симметрия основана на подобии. Она означает такое соотношение между элементами, фигурами, когда они повторяют и уравновешивают друг друга.

Симметрия подобия. Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

Основой эволюции живой материи является симметрия подобия. Рассмотрим цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга. Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола - коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно сужается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие - общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы - листу березы. Геометрическое подобие пронизывает все ветви древа жизни. Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой "начала", которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прямой и ветви равномерно расположены относительно ствола. Дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах - оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева. Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно.

Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

По мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия, например разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так, устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер (хиральность). Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Предполагают, что возникшая асимметрия произошла скачком в результате Большого Биологического Взрыва (по аналогии с Большим Взрывом, в результате которого образовалась Вселенная) под действием радиации, температуры, электромагнитных полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс, по существу, также является процессом самоорганизации

Областное бюджетное профессиональное образовательное учреждение

«Курский педагогический колледж»

Проект по предмету

«МАТЕМАТИКА»

тема:

С И М М Е Т Р И Я В ПРИРОДЕ

Специальность среднего профессионального образования

44.02.02 Преподавание в начальных классах.

Выполнила: студентка

группы 1 Д школьного отделения

Заикина Яна Александровна

Проверил: преподаватель математических дисциплин

Волчкова Наталья Николаевна

Курск, 2017

Введение …………………………………………………………………….....................4

ГЛАВА I . Что такое «симметрия»……………………………......................................6

1.1.Роль симметрии в нашей жизни………………………………….........................6

1.2. Что такое симметрия? В иды симметрии..............................................................7

1.2.1. Центральная симметрия..............................................................................12

1.2.2. Осевая симметрия........................................................................................12

      1. Зеркальная симметрия ………………….……….......................................14

        Поворотная симметрия................................................................................14

ГЛАВА II . Симметрия в природе …………………………........................................15

………………..................……............15

2.2. симметрия в живой природе. Асимметрия и симметрия. …...............................18

2.3. Симметрия растений ……………………….............................................................19

2.4. Симметрия животных ……………………………...................................................21

2.5. Симметрия в неживой природе................................................................................21

2.6. Человек ― существо симметричное …………………...........................................24

Заключение……………………………………………………….…..….......................26 Список литературы……………..........………………………………..........................27

Приложение……………………………………………………………………….........28



ВВЕДЕНИЕ

Симметрия "...быть прекрасным - значит быть симметричным и соразмерным."

Платон (древнегреческий философ, 428 – 348 г. до н.э.)

Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наш взгляд и ласкает наше внимание. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну их красоты. Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных.

Мы выбрали для исследования очень необычную тему: «Симметрия в природе», потому, что она связана с интересующим нас вопросом о гармонии нашего мира.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. В своём проекте я покажу, что законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь подчиняются принципам симметрии. Мы узнаем, что существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчёркивает гармоничность нашего мира. В нашей исследовательской работе будет отмечено так же, что помимо симметрии существует понятие и асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи на микроуровне преобладает асимметрия.

Было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие областные науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей. Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

Нам это важно, потому что для многих людей математика ― скучная и сложная наука, но для меня математика ― не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук.

Цели исследовательской работы:

    Раскрыть особенности симметрии видов в природе.

    Показать всю привлекательность математики, как науки её взаимосвязь с природой в целом.

    Узнать, присутствует ли симметрия в окружающем нас мире.

    Изучить особенности различных видов симметрии в природе.

Для достижения поставленной цели, был определен ряд задач:

      1. Проанализировать литературу по исследуемой проблеме;

        Изучить основные виды симметрии ;

        Подбор материала по теме «Симметрия в природе», и его обработка.

        Систематизация и обобщение собранного материала.

Проблема:

Как часто встречаются симметричные и несимметричные формы в природе?

Как симметрия и асимметрия влияют на наше настроение?

Какова роль симметрии в природе?

Объектом исследования является понятие «симметрия».

Предмет исследования:

Особенности различных видов симметрии в природе.

Гипотеза исследования состоит в том, чтобы показать важную, исключительную роль принципа симметрии в научном познании мира

Глава 1. Что такое симметрия?

1.1. Роль симметрии в нашей жизни

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами. Но в известной мере и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою жизнь, академика А. В. Шубникова (1887 - 1970 гг.)

Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слова «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея неизменности относительно некоторых преобразований.

Симметрия воспринимается в нашей жизни и вообще человеком как проявление закономерности, порядка, царящего в природе. Восприятие же закономерного всегда доставляет нам удовольствие, сообщает некоторую уверенность и даже бодрость.

В нашей жизни мы повседневно, всегда и везде встречаемся с симметрией. Это симметричные предметы и геометрические фигуры, живая природа и зеркальная симметрия и т.д. Итак, «сфера влияния» симметрии поистине безгранична. Природа - наука - искусство. Всюду мы видим противоборство, а часто и единство двух великих начал - симметрии и асимметрии, которые во многом определяют гармонию природы, мудрость науки и красоту искусства. Мы видели, что симметрия форм живой природы обязана своим существованием, прежде всего закону тяготения. Но тяготение - вечный закон природы; значит, вечна и симметрия и она всегда будет ассоциироваться с красотой.

Симметрия воспринимается нами, как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Теперь мы, понаблюдав и изучив специальную литературу, посмотрим, где найдет свое отображение симметрия. Почему симметрия буквально пронизывает весь окружающий нас мир?

1.2.Что такое симметрия. В иды симметрии

Существует множество понятий о симметрии.

Симметрия - это соответствие, неизменность (инвариантность), проявляемых при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

Симметрия. Основное понятие.

Симметрия - определённый геометрический порядок в расположении сходственных частей тела, имеет непосредственное отношение к характеру. Симметрия является жизненно важным признаком, который отражает особенности строения, образа жизни и поведения животного.

Симметрия - соразмерность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости, прямой или плоскости.

Симметрия («соразмерность») - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого. В физике общепринято выделять две формы симметрии: геометрическую и динамическую. Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии. Примерами геометрических симметрии являются: однородное пространство и время, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета. Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии. К динамическим симметриям относят симметрии внутренних свойств объектов и процессов, например симметрии электрического заряда. Геометрические и динамические симметрии можно рассматривать еще в одном аспекте, как внешние и внутренние симметрии.

Отсутствие или нарушение симметрии называют асимметрией или аритмией.

К основным формам геометрической симметрии относятся:

зеркальная симметрия;

осевая симметрия;

центральная симметрия;

вращательная симметрия;

скользящая симметрия;

точечная симметрия;

поступательная симметрия;

винтовая симметрия;

неизометричная симметрия;

фрактальные симметрии.

Кроме этого существует:

радиальная симметрия;

прирадиальная симметрия;

билатеральная симметрия.

В курсе планиметрии мы познакомились с движениями плоскости, т. е. отображениями плоскости на себя, сохраняющими расстояния между точками. Введем теперь понятие движения пространства. Предварительно разъясним, что понимается под словами отображение пространства на себя. Допустим, что каждой точке М пространства поставлена в соответствие некоторая точка М 1 причем любая точка М 1 пространства оказалась поставленной в соответствие какой-то точке М. Тогда говорят, что задано отображение пространства на себя. Говорят также, что при данном отображении точка М переходит (отображается) в точку М 1 . Под движением пространства понимается отображение пространства на себя, при котором любые две точки А и В переходят (отображаются) в какие-то точки А1 и В 1 так, что А 1 В 1 =АВ. Иными словами, движение пространства - это отображение пространства на себя, сохраняющее расстояния между точками. Примером движения может служить центральная симметрия - отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М, относительно данного центра О.

Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М 1 относительно оси а.

Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости точку М 1 .

Поворотная симметрия

Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.

Однако наряду с привычными формами симметрии существуют и другие виды симметрии:

Винтовая симметрия - объекта относительно группы преобразований, являющихся преобразования поворота объекта вокруг и его вдоль этой оси.

Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента.

- термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m -мерного . Собственными вращениями называются разновидности , сохраняющие ориентацию.

Симметрия в биологии - это закономерное расположение подобных (одинаковых, равных по размеру) частей тела или форм живого организма, совокупности живых организмов относительно центра или . Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной. Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально-симметричным. Этот тип симметрии встречается значительно реже.

Асимметрия - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у ) от отсутствия симметрии. В и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные при сложении пополам в точности не совпадают.

У биологических объектов встречаются следующие типы симметрии:

Сферическая симметрия в трёхмерном пространстве на произвольные углы.

Аксильная симметрия (радиальная симметрия) - симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.

Симметрия вращения n -ого порядка - симметричность относительно на угол 360°/n вокруг какой-либо оси.

Двусторонняя ( ) симметрия - симметричность относительно плоскости симметрии (симметрия ).

Трансляционная симметрия - симметричность относительно в каком-либо направлении на некоторое расстояние (её частный случай у животных - ).

Триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям.

РАДИАЛЬНАЯ СИММЕТРИЯ

В о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у Velella имеется ось симметрии второго порядка и нет плоскостей симметриИ

Обычно через ось симметрии проходят две или более симметрии. Эти плоскости пересекаются по прямой - оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди (например, ).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосновной-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Радиальная симметрия характерна для многих , а также для большинства . Среди них встречается так называемая , базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двусторонне симметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует (две плоскости симметрии, к примеру, у ). Если плоскость симметрии только одна, то симметрия (такую симметрию имеют животные из группы ).

У часто встречаются радиальносимметричные : 3 плоскости симметрии ( ), 4 плоскости симметрии ( ), 5 плоскостей симметрии ( ), 6 плоскостей симметрии ( ). Цветки с радиальной симметрией называются актноморфные, цветки с билатеральной симметрией - зигоморфные.

БИЛАТЕРАЛЬНАЯ СИММЕТРИЯ

(двусторонняя симметрия) - симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A 1 , во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, различия в папиллярных линиях, ветвлении сосудов и расположении родинок на правой и левой руках человека). Часто существуют небольшие, но закономерные различия во внешнем строении (например, более развитая мускулатура правой руки у праворуких людей) и более существенные различия между правой и левой половиной тела в расположении . Например, у обычно размещено несимметрично, со смещением влево.

У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих.

Билатеральная симметрия свойственна всем достаточно высокоорганизованным , кроме . В других царствах живых организмов билатеральная симметрия свойственна меньшему числу форм. Среди протистов она характерна для (например, ), некоторых форм , , раковинок многих . У растений билатеральную симметрию имеет обычно не весь организм, а его отдельные части - или . Билатерально симметричные цветки ботаники называют зигоморфными.

1.2.1. Центральная симметрия

Введём понятие центральной симметрии: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией.

Понятия центра симметрии в «Началах» Евклида нет, но, однако в 38-ом предложении 6 книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в шестнадцатом веке. В одной из теорем Клавиуса, гласящей: «Если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к рёбрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма ― точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличии от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много ― любая точка прямой является центром её симметрии. Примером фигуры, не имеющей цента симметрии, является произвольный треугольник.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси координат, а график нечётной функции ― относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция ― осевой.

Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180 около центра симметрии. Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором ― перпендикулярна к этой плоскости.

1.2.2. Осевая симметрия

Понятие осевой симметрии предоставлено следующим образом: «Фигура называется симметричной относительно прямой m , если для каждой точки фигуры симметричная ей точка относительно прямой, м также принадлежит этой фигуре. Прямая м называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке С, соответствует такая принадлежащая этой же фигуре точка Д, что отрезок АВ перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведём примеры фигур, обладающих осевой симметрий. У неразвёрнутого угла одна ось симметрии ― прямая, на которой расположена биссектриса угла.

Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси, а квадрат ― четыре оси симметрии. У окружности их бесконечно много ― любая прямая, проходящая через её центр, является осью симметрии. Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

1.2.3. Зеркальная симметрия

Зеркальной симметрией называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно плоскости а точку М 1 .

Зеркальная симметрия хорошо известна каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Многие очень любят фотографировать природу. Особенно когда весной разливается река, то на дальних лугах можно увидеть красивую картину, когда в воде отражаются: облака, трава.

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» - это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Важно отметить, что два симметричных друг другу тела, не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя назвать равными, поэтому их называют зеркально равными.

Две зеркально симметричные плоские плоские фигуры всегда можно наложить друг га друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости. Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).


Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n-го порядка.


При п=2 все точки фигуры поворачиваются на угол 1800 (3600 /2 = 1800)вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии.

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Глава 2. Симметрия в природе

2.1. Значение симметрии в познании природы

Идея симметрии часто являлась основным пунктом в гипотезах и теориях учёных прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно провести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдалённой галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако, достоверно, что игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма форма игральной кости в принципе исключена, поскольку требование равно вероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять.

Идея симметрии часто служила учёным путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звё1зд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием её внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решётки из атомов, так называемой кристаллической решётки.

Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы «сохраняющая величина», являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует.

В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах.

Видный советский ученый академик В. И. Вернадский писал в 1927 году: «Новым в науке являлось не выявление принципа симметрии, а выявление его всеобщности». Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны.

Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твёрдого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идёт не только о физических законах, но и о других, например, биологических.

Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, явления - объекты, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными.

3) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с эти выделяются разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2/ n , где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется осью n -ного порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решёток, которые могут быть и плоскими, и пространственными.

ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трёхмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии.

Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом - плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле неё - шагают, плывут, летят, катятся, - обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Всё то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.

СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрией с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрёшки. Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной обладают некоторые буквы: Ж, Н, Ф, О, Х.

Существует много других видов симметрий, имеющих абстрактный характер.

Например, ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; НАСЛЕДСТВЕННОСТЬ - это тоже определённая симметрия.

КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.

В неживой природе симметрия, прежде всего, возникает в таком явлении природы, как кристаллы, из которых состоят практически все твёрдые тела.

Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка.

Внимательное наблюдение показывает, что основу красоты многих форм, созданных природой, составляет симметрия.

2.2. Симметрия в живой природе. Асимметрия и симметрия

Наиболее часто встречающиеся типы симметрии в живой природе:

В живой природе наиболее часто встречается симметрия зеркального отражения и радиальная симметрия. Радиальная симметрия - это ось симметрии бесконечного порядка. Ещё древние греки обратили внимание на этот факт.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времён и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрии (формы, подобия, относительного расположения). Причём организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, осевая, радиальная и т.д.). Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: «Открытия последних десятилетий в области физики элементарных частиц заставляет нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента её зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создаёт возможности для существования всё большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь ― это тоже нарушение симметрии».

Молекулярная асимметрия открыта Л. Пастером, который первым выделил «правые» и «левые» молекулы винной кислоты: правые молекулы похожи на правый винт, а левые ― на левый. Такие молекулы химики называют стереоизомерами.

Молекулы стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру ― в то же время они различны, поскольку являются зеркально асимметричными, т.е. Объект оказывается не тождественным со своим зеркальным двойником. Поэтому здесь понятия «правый ― левый» условны.

В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. В состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определённым типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара ― только правыми. Это свойство продуктов вещества и его продуктов жизнедеятельности называют диссиметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для неё ― яд.

Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей диссиметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну.

Диссиметрия ― единственное свойство, благодаря которому мы можем отличать вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе «Жизнь и судьба» В. Гроссман: «В большом миллионе русских деревенских изб, нет, и не может быть неразличимо схожих. Всё живое ― неповторимо».

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственно разным объектам, тогда как асимметрия связана с индивидуальным воплощением общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

ОБЩАЯ ФОРМУЛА СИММЕТРИИ В БИОЛОГИИ

Рассмотрим тела, обладающие четырьмя плоскостями симметрии, пересекающимися на оси четвёртого порядка. Симметрию таких тел можно обозначить так: 4 ۰ t .

Общая формула симметрии таких фигур записывается в виде: N ۰ t , где N - символ оси, t - символ плоскости, t может быть равно 1, 2, 3... .

В биологии симметрия N ۰ t называется радиальной (из-за целого веера пересекающихся на оси плоскостей)

Билатеральная система - частный случай радиальной, так как в этом случае N =1 ۰ t .

2.3. Симметрия растений

Центральная симметрия образуется при повороте вокруг точки на угол 180 0. Ярко выраженной центральной симметрией обладают цветы и плоды растений.

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля. Симметрию можно увидеть и на листьях деревьев.

Симметрию можно увидеть среди цветов. Осевой симметрией обладают цветы семейства розоцветных, а центральной симметрией - семейство крестоцветных.

Среди цветов наблюдаются поворотные симметрии разных порядков . Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120 градусов, для колокольчика - 72 градуса, для нарцисса - 60 градусов. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдёт смещение при повороте на 360 градусов. Те же цветы нарцисса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно.

Особенно часто среди цветов встречается симметрия пятого порядка. К ней относятся такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых растений - вишня, яблоня, груша, мандарин и др.; цветы плодово-ягодных растений - земляника, ежевика, малина, шиповник и др.; садовые цветы - настурция, флокс и др.

В пространстве существуют тела, обладающие винтовой симметрией, т.е. Совмещающиеся со своим первоначальным положением после поворота на угол поворота вокруг оси, дополненного сдвигом той же оси.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно чётко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого древа есть основание и вершина, «верх» и «них», выполняющие различные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси «древесного конуса» и плоскостей симметрии.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия пятого порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось пятого порядка - своеобразный инструмент борьбы за существование, «страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решёткой». Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решёткой. Однако, упорядоченные структуры в ней представлены очень широко.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимальном возможном объёме наиболее экономно использовать строительный материал - воск

2.4. Симметрия животных

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Симметрия в строении животных - почти общее явление, хотя почти всегда встречаются исключения из общего правила.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевую) или билатеральную (двустороннюю), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.

В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг оси на определённый градус, то оно будет отражаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.

Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.

Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии - двусторонняя. Левая половина их тела это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе - скорее всего ничего не выйдет.

Типы симметрии у животных:

    центральная

    осевая

    радиальная

    билатеральная

    двулучевая

    поступательная (метамерия)

    поступательно-вращательная [ 10 ]

Ось симметрии - это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадей осью тела.

Плоскость симметрии - это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti - против; mer - часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь ровное количество щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии -глоточная и щупальцевая. Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры - соответственно правая и левая стороны животного.

Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух анантиоморфов - правой и левой половин. Анантиоморфы - пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами - это объект и его зазеркальный двойник при условии, что сам объект зазеркально асимметричен.

Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

    1. Симметрия в неживой природе

Однако симметрия существует и там, где её не видно на первый взгляд. Физик сказал, что всякое твёрдое тело - кристалл. Знаменитый кристаллограф Евграф Степанович Фёдоров сказал: «Кристаллы блещут симметрией». Химик скажет, что все тела состоят из атомов. А многие атомы располагаются в пространстве по принципу симметрии.

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка - это маленький кристалл замёрзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией.


2.5. ЧЕЛОВЕК - СУЩЕСТВО СИММЕТРИЧНОЕ

Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путём трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в едином соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако, наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но неодинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, левая штанина - правой. Пуговицы на куртке или рубашке сидят ровно посередине, а если и отступают от неё, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчёсывая волосы на косой пробор - слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки. Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают индивидуальные, характерные черты. И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, в одной - красной, а в другой - чёрной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.

ЗАКЛЮЧЕНИЕ

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике, математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчёркивает гармоничность нашего мира. Ещё одним интересным проявлением симметрии являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология. Помимо симметрии существует также понятие асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. Симметрия окружает человека на каждом шагу. В природе и во многих творениях человека без симметрии не было бы красоты, совершенства и удобства. Как бы мы жили без симметрии? Неужели лишь она украшает наш мир? Да, без симметрии наш мир выглядел бы совсем по-другому. Ведь именно на симметрии основаны многие законы сохранения. Например, законы сохранения энергии, импульса и момента импульса являются следствиями пространственно-временных симметрий. И без симметрии не было бы законов сохранения, которые во многом управляют нашим миром.

ТАК ЧТО СИММЕТРИЯ - ОДНО ИЗ ГЛАВНЫХ ПОНЯТИЙ ВО ВСЕЛЕННОЙ!

Список литературы

1. Атанасян, Л. С. Бутузов В. Ф. «Геометрия 10 - 11 класс»

2. Вейль, Г.«Симметрия» Москва, 2002

3. Виленкин, З. Н. «Симметрия в природе и технике» М.: Едиториал УРСС, 2003 г.

4. Выгодский, М. Я «Справочник по элементарной математике»

Издательство «Наука». - Москва, 1971 г.

5. Гика М. «Эстетика пропорций в природе и искусстве» Москва, 1936 г.

6. Гильде, В.«Зеркальный мир» Мир, 1982 г.

7. Даль, В. И. «Толковый словарь живого великорусского языка» Москва, 1978 г..

8. Ожегов, С. И. Толковый словарь русского языка / Ожегов, С. И.,. Шведова, Н. Ю – М.: Просвещение, 2010.Емельянов В. «Фундаментальные симметрии»МИФИ, 2008 г.

9. Тарасов, С Л. «Этот удивительно симметричный мир» Издательство: - М.: Просвещение, 2002 г.

10. Тарасов, С. Л«Симметрия в окружающем мире» ОНИКС, 2005 г

11. Урманцев, Ю. А. Симметрия природы и природа симметрии /. Урманцев. Ю.А- М.: Мысль, 1974 г.

12. Шубников А. В., «Симметрия в науке и искусстве» Москва, 1972 г..

13.

14.
















Тема реферата была выбрана после изучения раздела «Осевая и центральная симметрия». Остановился именно на этой теме не случайно, хотелось узнать принципы симметрии, её виды, разнообразие её в живой и неживой природе.

Введение…………………………………………………………………………3

Раздел I. Симметрия в математике………………………………………………5

Глава 1. Центральная симметрия………………………………………………..5

Глава 2. Осевая симметрия……………………………………………………….6

Глава 4. Зеркальная симметрия…………………………………………………7

Раздел II. Симметрия в живой природе………………………………………….8

Глава 1. Симметрия в живой природе. Асимметрия и симметрия…………8

Глава 2. Симметрия растений…………………………………………………10

Глава 3. Симметрия животных………………………………………………….12

Глава 4. Человек – существо симметричное…………………………………14

Заключение……………………………………………………………………….16

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

Средняя общеобразовательная школа №3

Реферат по математике на тему:

«Симметрия в природе»

Подготовила: ученик 6 класса «В» Звягинцев Денис

Учитель: Курбатова И.Г.

с. Безопасное, 2012г.

Введение…………………………………………………………………………3

Раздел I. Симметрия в математике………………………………………………5

Глава 1. Центральная симметрия………………………………………………..5

Глава 2. Осевая симметрия……………………………………………………….6

Глава 4. Зеркальная симметрия…………………………………………………7

Раздел II. Симметрия в живой природе………………………………………….8

Глава 1. Симметрия в живой природе. Асимметрия и симметрия…………8

Глава 2. Симметрия растений…………………………………………………10

Глава 3. Симметрия животных………………………………………………….12

Глава 4. Человек – существо симметричное…………………………………14

Заключение……………………………………………………………………….16

  1. Введение

Тема реферата была выбрана после изучения раздела «Осевая и центральная симметрия». Остановился именно на этой теме не случайно, хотелось узнать принципы симметрии, её виды, разнообразие её в живой и неживой природе.

Под симметрией (от греч. symmetria - соразмерность) в широком смысле понимают правильность в строении тела и фигуры. Учение о симметрии представляет собой большую и важную ветвь тесно связанную с науками разных отраслей. С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обладают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например, зубчатые колеса.

Было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие области науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей.

Я обратил внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

Нам это важно, потому что для многих людей математика – скучная и сложная наука, но математика – не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук от простых до самых сложных.

Цели реферата были следующими:

  1. раскрыть особенности видов симметрии;
  2. показать всю привлекательность математики как науки и её взаимосвязь с природой в целом.

Задачи:

  1. сбор материала по теме реферата и его обработка;
  2. обобщение обработанного материала;
  3. выводы о проделанной работе;
  4. оформление обобщенного материала.

Раздел I. Симметрия в математике

Глава 1. Центральная симметрия

Понятие центральной симметрии следующее: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией.

Понятия центра симметрии в «Началах» Евклида нет, однако в 38-ом предложении XI книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма – точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличие от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много – любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является произвольный треугольник.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции – относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция – осевой.

Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180° около центра симметрии.

Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором – перпендикулярна к этой плоскости.

Глава 2. Осевая симметрия

Понятие осевой симметрии представлено следующим образом: «Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая a называется осью симметрии фигуры». Тогда говорят, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам. Рассмотренная выше (гл. 1) пара треугольников обладает (кроме центральной) еще осевой симметрией. Её ось симметрии проходит через точку С перпендикулярно к плоскости чертежа.

Приведём примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат- четыре оси симметрии. У окружности их бесконечно много - любая прямая, проходящая через её центр, является осью симметрии.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

Глава 3. Зеркальная симметрия

Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» - это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Важно отметить, что два симметричных друг другу тела не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя называть равными, поэтому их называют зеркально равными.

Рассмотрим пример. Если плоская фигура ABCDE симметрична относительно плоскости Р (что возможно лишь в случае взаимной перпендикулярности плоскостей ABCDE и Р), то прямая KL, по которой пересекаются упомянутые плоскости, служит осью симметрии (второго порядка) фигуры ABCDE. Обратно, если плоская фигура ABCDE имеет ось симметрии KL, лежащую в её плоскости, то эта фигура симметрична относительно плоскости Р, проведённой через KL перпендикулярно к плоскости фигуры. Поэтому ось КЕ можно назвать также зеркальной L прямой плоской фигуры ABCDE.

Две зеркально симметричные плоские фигуры всегда можно наложить
друг на друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости.

Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).

Раздел II. Симметрия в живой природе

Глава 1. Симметрия в живой природе. Асимметрия и симметрия

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрии (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: "Открытия последних десятилетий в области физики элементарных частиц заставляют нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента ее зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создает возможности для существования все большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь - это тоже нарушение симметрии"

Молекулярная асимметрия открыта Л. Пастером, который первым выделил "правые" и "левые" молекулы винной кислоты: правые молекулы похожи на правый винт, а левые - на левый. Такие молекулы химики называют стереоизомерами.

Молекулы стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру - в то же время они различимы, поскольку являются зеркально асимметричными, т.е. объект оказывается нетождественным со своим зеркальным двойником. Поэтому здесь понятия "правый-левый" - условны.

В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. в состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определенным типом симметрии. Например, молекулы всех аминокислот в любом.живом организме могут быть только левыми, сахара ~ только правыми. Это свойство живого вещества и его продуктов жизнедеятельности называют дисимметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для нее яд.

Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей дисимметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну. Дисимметрия - единственное свойство, благодаря которому мы можем отличить вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание симметрии, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе "Жизнь и судьба" В. Гроссман: "В большом миллионе русских деревенских изб нет и не может быть двух неразличимо схожих. Все.живое неповторимо.

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах. На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

Глава 2. Симметрия растений

Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.

Среди цветов наблюдаются поворотные симметрии разных порядков. Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120є, для колокольчика – 72є, для нарцисса – 60є . Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 360є. Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно. Особенно часто среди цветов встречается симметрия пятого порядка. Это такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых деревьев – вишня, яблоня, груша, мандарин и др., цветы плодово-ягодных растений – земляника, ежевика, малина, шиповник; садовые цветы – настурция, флокс и др.

В пространстве существуют тела, обладающие винтовой симметрией, т. е. совмещающиеся со своим первоначальным положением после поворота на угол вокруг оси, дополненного сдвигом вдоль той же оси.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Глава 3. Симметрия животных

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды – от простейших до самых сложных. Симметрия в строение животных – почти общее явление, хотя почти всегда встречаются исключения из общего правила.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.

В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.

Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.

Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).

При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии – двусторонняя. Левая половина их тела - это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе - скорее всего ничего не выйдет.

Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфы – пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами – это объект и его зазеркальный двойник при условии, что сам объект зеркально асимметричен.

Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

Губки и пластинчатые не проявляют симметрию.

Глава 4. Человек - существо симметричное

Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.

Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлинённой формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина - левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор - слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой). Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают характерные, индивидуальные черты.И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.

Заключение

С симметрией мы встречаемся везде ~ в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике,химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира.

Еще одним интересным проявлением симметрии жизненных npoifeccoe являются биологические ритмы (биоритмы), циклические колебания биологических процессов и их характеристик (сокращения сердца, дыхание, колебания интенсивности деления клеток, обмена веществ, двигательной активности, численности растений и животных), зачастую связанные с приспособлением организмов к геофизическим циклам. Исследованием биоритмов занимается особая наука - хронобиология. Помимо симметрии существует также понятие ассиметрии; Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от планирования расположения нашей мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

Соты

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Паутина

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.

Круги на полях

Дайте паре обманщиков доску, косилки и спасительную темноту, и Вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.

Снежинки

Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.