Устройства индикации со светодиодами. Светодиодная шкала Подключение светодиодной шкалы часть 1

Микросхема драйвера светодиодной шкалы LM3914.

На основе этой микросхемы можно конструировать светодиодные индикаторы с линейной шкалой. В основе микросхемы LM3914 заложены 10 компараторов.

Входной сигнал через операционный усилитель подается на инверсные входы компараторов LM3914, а прямые входы их подключены к резисторному делителю напряжения. К десяти выходамкомпараторов подключаются светодиоды.

В микросхеме есть выбор режима индикации, столбик или режим точка, то есть с изменением уровня сигнала, перемещаясь по линейке светится только один светодиод.

выводы LM3914N:

10…18 - выходы.

2 - минус питания.

3 - плюс источника питания от 3…18 вольт.

4 - на данный вывод подается напряжение, величина которого определяет нижний уровень индикации. Допустимый уровень от 0 до Uпит.

5 - на данный вывод подается входной сигнал.

6 - на данный вывод подается напряжение, величина которого определяет верхний уровень индикации. Допустимый уровень от 0 до Uпит.

7, 8 - выводы для регулирования тока, протекающего через светодиоды.

9 - вывод отвечает за режим работы индикации («точка» или «столбик»)

Порог переключения светодиодов вычисляется автоматически микросхемой по формуле Uв. – Uн.)/10

Работа индикатора на микросхеме LM3914N

Пока на ножке Uвх. сигнал ниже чем напряжение на выводе Uн., светодиоды не горят. Как только входной сигнал сравняется с Uн. – загорится светодиод HL1. При последующем увеличении сигнала, в режиме «точка» выключается HL1 и одновременно загорается HL2. В том случае если LM3914 функционирует в режиме «столбик», то при включении HL2, HL1 не гаснет. Для выбора одного из двух режимов работы нужно сделать следующее:

  • Режим «точка» - вывод 9 подключить к минусу питания или оставить неподключенным.
  • Режим «столбик» - вывод 9 подсоединить к плюсу питания микросхемы.

Светодиоды - полупроводниковые приборы, преобразующие электроток в непосредственное световое излучение.

Как подключить светодиод через резистор или напрямую, а главное сделать такое подсоединение безопасным в эксплуатации и долговечным - основные вопросы, которые рассматриваются с целью обеспечения работоспособности любых светоизлучающих диодов.

Самостоятельное определение светодиодной полярности осуществляется несколькими несложными методами:

  • посредством измерений;
  • по результатам визуальной оценки;
  • при подключении к источнику питания;
  • в процессе ознакомления с технической документацией.

К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии.

Использование тестирующих устройств

С целью максимально точного определения светодиодной полярности, щупы подключаются непосредственно к диоду, после чего отслеживаются показания тестера. При высвечивании на шкале «бесконечного» сопротивления, провода щупов меняются местами.

Если тестер показывает какие-либо показатели конечного значения в условиях замеров сопротивления проверяемых светоизлучающих диодов, то можно быть уверенным в подключении прибора с соблюдением вида полярности, а данные о расположении «плюса» и «минуса» являются точными.

Проверка светодиодов мультиметром

Визуальное определение полярности

Несмотря на множество существующих в настоящее время видов конструкций , наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм.

Наиболее мощные диоды сверх яркого типа обладают планарными плоскими выводами, промаркированными «+» и «-».

Устройства в цилиндрическом корпусе имеют внутри пару электродов, отличающихся площадью. Именно катодная часть светоизлучающих диодов отличается большей электродной площадью и наличием характерного скоса на «юбке».

Светодиоды, применяемые в поверхностном монтаже, обладают специальным скосом или «ключом», указывающим на катод или минусовую полярность.

Подключение к источнику питания

Передача питания от элементов с постоянным напряжением - один из самых наглядных вариантов определения диодной полярности, требующий использования специального блока с поступательным регулированием напряжения, или традиционной аккумуляторной батареи. После подключения, постепенно повышаются показатели напряжения, что вызывает свечение светодиода и свидетельствует о правильном определении полярности.

Подключение диодов к питанию

Чтобы проверить работоспособность светового диода, в обязательном порядке подключается резистор токоограничивающего типа с сопротивлением от 680 Ом.

Этапы сборки

При самостоятельной сборке и последующем тестировании излучающих свет диодов в рабочем режиме, целесообразно воспользоваться данной последовательностью:

  • определиться с техническими характеристиками, отраженными в сопроводительной документации;
  • составить схему подключения с учетом уровня напряжения;
  • вычислить показатели потребляемой мощности электроцепи;
  • подобрать драйвер или блок питания с оптимальной мощностью;
  • рассчитать резистор при стабилизированном напряжении;
  • определить полярность LЕD-источника;
  • припаять провода к светодиодным выходам;
  • подсоединить источник питания;
  • зафиксировать диод на радиаторе.

Процесс тестирования излучающих свет диодов, заключается в подключении собранной конструкции к электрической сети и замере потребляемого тока.

Звезда устанавливается на радиатор посредством теплопроводной пасты, а припаивать провода следует достаточно мощным паяльником, что обусловлено естественным забором алюминием тепла, с участка контакта и припоя.

Источники питания

Для подключения светодиода применяются специальные источники питания, разрабатываемые согласно установленным требованиям и нормативам. В процессе проектирования, потребуется определиться с коэффициентом мощности, энергетической эффективностью и уровнем пульсации.

Основной особенностью современных источников питания является наличие встроенного корректора коэффициента мощности, а приборы для внутреннего освещения отличаются повышенными требованиями к уровню токовой пульсации.

Схемы подключения светодиодов

Если источник питания в виде светоизлучающих диодов, предполагается применять в наружном освещении, то показатели защиты такого устройства должны составлять IP-67 при широком температурном диапазоне.

Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне. Если источник для LЕD-светильника имеет стабилизацию по показателям напряжения, то формируется постоянное напряжение выходного типа в условиях токовой нагрузки, но не более максимально допустимых значений. В некоторых современных приборах присутствует комбинированная стабилизация.

Как подключить светодиод

Обеспечение работоспособности излучающих свет диодов, предполагает не только наличие источника питания, но и строгого соблюдения схемы подключения.

К 1,5 В

Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,2-3,4 В. При подключении применяется преобразователь напряжения в виде блокинг-генератора на резисторе, транзисторе и трансформаторе.

Запитываем светодиод к 1,5 ватт

Использование упрощенной схемы, лишенной стабилизатора, позволяет обеспечивать непрерывную работоспособность светоизлучающих диодов до снижения напряжения в элементе питания до показателей 0,8 В.

К 5 В

Подключение светодиода к элементу питания с номинальными токовыми показателями на уровне 5 В предполагает подсоединение резистора, имеющего сопротивление в пределах 100-200 Ом.

Параллельное подключение светодиодов

Если подключение в 5 вольт необходимо для установки пары диодов, то в электрическую цепь последовательным способом включается резистор ограничительного типа с сопротивлением не более 100 Ом.

К 9 В

Батарейка типа «Крона» обладает относительно небольшой емкостью, поэтому такой источник питания очень редко применяется для подключения достаточно мощных светодиодов. Согласно максимальному току, не превышающему 30-40 мА, чаще всего осуществляется последовательное подсоединение трёх светоизлучающих диодов, имеющих рабочий ток 20 мА.

К 12 В

Стандартный алгоритм подключения диодов к элементу питания на 12 В включает в себя определение типа блока, нахождение номинального тока, напряжения и потребляемой мощности, а также подсоединение к выводам с обязательным соблюдением полярности. В этом случае резистор размещается на любом участке электрической цепи.

Контакты на участках подсоединения излучающих свет диодов надежно запаиваются, а после штатной проверки работоспособности - изолируются специальной лентой.

К 220 В

При использовании , в обязательном порядке ограничивается ток, который будет протекать через световой диод, что предотвратит перегрев и выход светоизлучающего прибора из строя. Также необходимо понизить уровень обратного светодиодного напряжения с целью предупреждения пробоя.

Схема подключения светодиодов к 220 вольт

Ограничение уровня тока в условиях переменного напряжения осуществляется резисторами, конденсаторами или катушками индуктивности. Питание диода при постоянном напряжении предполагает использование исключительно резисторов.

Питание светодиодов от 220 В своими руками

Драйвер для диодных источников света на 220 В, является неотъемлемой частью сборки безопасного и долговечного прибора, и изготовить такое устройство вполне можно самостоятельно. Чтобы светоизлучающие диоды смогли работать от традиционной сети, потребуется уменьшить амплитуду напряжения, снизить силу тока, а также выполнить преобразование переменного напряжения в постоянные показатели. С этой целью используется делитель, имеющий резисторную или ёмкостную нагрузку, а также стабилизаторы.

Подключение светодиодной ленты к 220 В

Надежным самодельным драйвером для диодных источников света на 220 В, может выступать элементарный импульсный блок питания, не обладающий гальванической развязкой. Самым главным преимуществом такой схемы является простота исполнения, дополненная надёжностью эксплуатации.

Однако при самостоятельном выполнении сборки нужно соблюдать максимальную осторожность, так как особенностью данной схемы является полное отсутствие ограничений по показателям отдаваемого тока.

Безусловно, светодиодами будут забираться стандартные 1,5 А, но соприкосновение рук с оголенными проводами спровоцирует повышение до 10 А и более, что весьма ощутимо.

В основе стандартной схемы простейшего светодиодного драйвера на 220В лежат три главных каскада, представленные:

  • делителем напряжения на показателях сопротивления;
  • диодным мостом;
  • стабилизацией напряжения.

Для сглаживания пульсации напряжения, потребуется в параллельном направлении цепи подключить электролитический конденсатор, ёмкость которого подбирается индивидуально, в соответствии с мощностью нагрузки.

Стабилизатором в этом случае вполне может выступать общедоступный элемент L-7812. Следует отметить, что собранная таким способом схема диодных источников света на 220 вольт отличается стабильной работоспособностью, но перед включением в электрическую сеть обязательно производится тщательная изоляция оголённых проводов и участков пайки.


Для контроля напряжения довольно часто применяют светодиодные шкалы.
Рассмотрим несколько способов построения таких схем.
Пассивные шкалы питаются от источника сигнала, и имеют самую простую схему.


Это может быть автомобильный вольтметр. Тогда VD8 следует выбрать на 12 вольт, так как он задаёт напряжение засветки первого светодиода на шкале. Следующие светодиоды VD2 - VD4 подключены через диодные переходы VD5-VD7. Падение на каждом диоде составляет в среднем 0.7 вольта. При росте напряжения произойдёт поочерёдное включение светодиодов.
Если поставить в каждое плечо два- три диода, то шкала растянется по напряжению в соответствующее количество раз.


По такой схеме строится индикатор батарей от 3V до 24V

Ещё один способ построения линейки диодов.


В этой схеме светодиоды зажигаются парами, шаг включения 2.5 вольта (зависит от типа светодиода).
У всех представленных выше схем имеется один недостаток - очень плавная засветка светодиодов при росте напряжения. Для более резкого включения в такие схемы добавляют транзисторы в каждом плече.

Теперь рассмотрим активные шкалы.
Есть для этой цели специализированные микросхемы, но мы будем рассматривать более доступные элементы, которые у большинства есть под рукой. Ниже схема на логических повторителях. Тут подойдут микросхемы логики 74ls244, 74ls245 на 8 каналов. Не забываем подать питание +5 вольт на саму микросхему (на схеме не указано).


Порог срабатывания первого елемента DD1
равен логическому уровню для данной серии микросхем.

Если мы используем в такой схеме инверторы типа К155ЛН1, К155ЛН2, 7405, 7406 . То подключение будет следующим:


Плюс в том, что в такой схеме работает выход с открытым коллектором, это позволяет применять в схеме сборки ULN2003 и им подобные.
Ну и последнее, это реализация бегущей точки на логических элементах 4и-не.

Логика работает таким образом что каждый элемент при включении запрещает работу всем элементам младшего номера. В данной схеме применимы микросхемы К155ЛА6. Последние два элемента DD3 и DD4 как видно из схемы могут быть на два входа, например: К155ЛА3, К155ЛА8.
Для батарейных устройств желательно применять низкопотребляющие аналоги из 176 и 561серий микросхем.

Новые статьи

● Проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов

В этом эксперименте мы рассмотрим работу аналоговых входов Arduino, работу потенциометра в качестве аналогового датчика и будем демонстрировать показания аналогового датчика с помощью светодиодной шкалы.

Необходимые компоненты:

В предыдущих экспериментах мы рассматривали работу с цифровыми выводами Arduino, они имеют только два возможных состояния: включено или выключено, HIGH или LOW, 1 или 0. Но для получения информации об окружающем мире необходимо работать с аналоговыми данными, имеющими бесконечное число возможных значений в данном диапазоне. Для получения аналоговых данных Arduino имеет аналоговые входы, оснащенные 10-разрядным аналого-цифровым преобразователем для аналоговых преобразований. Точность АЦП определена разрешением. 10-разрядный означает, что АЦП может разделить аналоговый сигнал на 210 различных значений. Следовательно, Arduino может присвоить 210 = 1024 аналоговых значения, от 0 до 1023. Опорное напряжение определяет максимальное напряжение, его значение соответствует значению 1023 АЦП. При напряжении 0 В на контакте АЦП возвращает значение 0, опорное напряжение возвращает значение 1023. Несмотря на то что можно изменить опорное напряжение, мы будем использовать опорное напряжение 5 В.

Рассмотрим, как использовать потенциометр в качестве аналогового датчика. Рисунок 4.1 показывает, как правильно подключить ваш

Рис. 4.1. Схема подключения потенциометра в качестве аналогового датчика

Потенциометр к Arduino в качестве аналогового датчика. Мы подключаем один из крайних выводов на землю, другой крайний вывод - к +5 В. Средний вывод потенциометра подключаем к аналоговому входу A0 платы Arduino. Для считывания данных с аналогового порта в Arduino есть функция analogRead().
Загружаем на плату Arduino скетч из листинга 4.1 для считывания значений из аналогового порта и вывода их в монитор последовательного порта Arduino.

Const int POT=0 ; int valpot = 0 ; void setup () { Serial.begin(9600 ); } void loop () { valpot = analogRead(POT); Serial.println(valpot); // вывод значений в последовательный порт delay(500 ); // задержка 0.5 сек }
Порядок подключения:


2. Загружаем в плату Arduino скетч из листинга 4.1.
3. Запускаем в Arduino IDE монитор последовательного порта.
4. Поворачиваем ручку потенциометра и наблюдаем вывод аналоговых значений потенциометра в монитор последовательного порта (см. рис. 4.2).


Рис. 4.2. Вывод аналоговых значений потенциометра в монитор последовательного порта

Теперь визуализируем аналоговые данные потенциометра с помощью 10-разрядной линейной светодиодной шкалы. Шкала представляет собой сборку из 10 независимых светодиодов с катодами со стороны надписи на корпусе. Для подключения шкалы к Arduino будем использовать 10 цифровых выводов D3-D12. Схема соединений показана на рис. 4.3. Каждый из светодиодов шкалы выводом анода соединен с цифровым выводом Arduino, а катодом на землю через последовательно соединенный ограничивающий резистор 220 Ом. Аналоговые данные потенциометра (0-1023) масштабируем в данные шкалы (0-10) с помощью функции map() и зажигаем соответствующее количество светодиодов. Скетч приведен в листинге 4.2.

const int POT=0 ; // Аналоговый вход A0 для подключения потенциометра int valpot = 0 ; // переменная для хранения значения потенциометра // список контактов подключения светодиодной шкалы const int pinsled={3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 }; int countleds = 0 ; // переменная для хранения значения шкалы void setup () { for (int i=0 ;i<10 ;i++) { // Сконфигурировать контакты подсоединения шкалы как выходы pinMode(pinsled[i],OUTPUT); digitalWrite(pinsled[i],LOW); { } void loop () { valpot = analogRead(POT); // чтение данных потенциометра // масштабируем значение к интервалу 0-10 countled=map (valpot,0 ,1023 ,0 ,10 ); // зажигаем количество полосок на шкале, равное countled for (int i=0 ;i<10 ;i++) { if (i// зажигаем светодиод шкалы digitalWrite(pinsled[i],HIGH); else // гасим светодиод шкалы digitalWrite(pinsled[i],LOW); } }

Порядок подключения:

1. Подключаем потенциометр по схеме на рис. 4.1.
2. Подключаем выводы светодиодной шкалы контактами анодов через ограничительные резисторы номиналом 220 Ом к выводам Arduino D3-D12, контактами катодов - на землю (см. рис. 4.3).
3. Загружаем в плату Arduino скетч из листинга 4.2.
4. Поворачиваем ручку потенциометра и наблюдаем на светодиодной шкале уровень значения потенциометра от максимального номинала.

Конструкция светодиодных индикаторов несколько сложнее. Конечно, при использовании специальной микросхемы управления её можно упростить до предела, но тут притаилась маленькая неприятность. Большинство таких микросхем развивает на выходе ток не более 10 мА и яркость светодиодов в условиях автомобиля может оказаться недостаточной. Кроме того, наиболее распространены микросхемы с выходами на 5 светодиодов, а это только "программа-минимум". Поэтому для наших условий схема на дискретных элементах предпочтительней, её можно расширять без особых усилий. Простейший индикатор на светодиодах (рис. 4) не содержит активных элементов и в питании, поэтому не нуждается.

Подключение - к магнитоле по схеме "mixed mono" или с разделительным конденсатором, к усилителю - "mixed mono" или напрямую. Схема предельно проста и не требует налаживания. Единственная процедура - подбор резистора R7. На схеме указан номинал для работы со встроенными усилителями головного устройства. При работе с усилителем мощностью 40...50 Вт сопротивление этого резистора должно быть 270...470 Ом. Диоды VD1...VD7 - любые кремниевые с прямым падением напряжения 0,7... 1 В и допустимым током не менее 300 мА. Светодиоды любые, но одного типа и цвета свечения с рабочим током 10. .15 мА. Поскольку светодиоды "питаются" от выходного каскада усилителя, их количество и рабочий ток увеличить в этой схеме нельзя. Поэтому придётся выбрать "яркие" светодиоды или найти для индикатора такое место, где он будет защищен от прямого освещения. Ещё один недостаток простейшей конструкции - малый динамический диапазон. Для улучшения работы необходим индикатор со схемой управления. Помимо большей свободы в выборе светодиодов можно простыми средствами сформировать шкалу любого типа - от линейной до логарифмической, или "растянуть" только один участок. Схема индикатора с логарифмической шкалой приведена на рис. 5.

Светодиоды в этой схеме управляются ключами на транзисторах VT1.VT2. Пороги срабатывания ключей задают диоды VD3...VD9. Подбирая их количество, можно изменять динамический диапазон и тип шкалы. Общую чувствительность индикатора определяют резисторы на входе. На рисунке приведены примерные пороги срабатывания для двух вариантов схемы - с одиночными и "сдвоенными" диодами. В основном варианте диапазон измерения - до 30 Вт на нагрузке 4 Ом, с одиночными диодами - до 18 Вт. Светодиод HL1 светится постоянно, он обозначает начало шкалы, HL6 индикатор перегрузки. Конденсатор С4 задерживает на 0,3...0,5 сек погасание светодиода, что позволяет заметить даже кратковременную перегрузку. Накопительный конденсатор С3 определяет время обратного хода. Оно, кстати, зависит от количества светящихся светодиодов - "столбик" от максимума начинает спадать быстро, а потом "притормаживает. Конденсаторы С1 и С2 на входе устройства нужны только при работе со встроенным усилителем магнитолы. При работе с "нормальным" усилителем их исключают. Количество сигналов на входе можно увеличить, добавив цепочки из резистора и диода. Количество ячеек индикации можно увеличить простым "клонированием", главное ограничение - "пороговых" диодов должно быть не больше 10 и между базами соседних транзисторов должен быть хотя бы один диод. Светодиоды можно использовать любые в зависимости от требований - от одиночных светодиодов до светодиодных сборок и панелей повышенной яркости. Поэтому на схеме приведены номиналы токоограничивающих резисторов для разных рабочих токов. К остальным деталям никаких специальных требований не предъявляется, транзисторы можно использовать практически любые структуры п-р-п с мощностью рассеяния на коллекторе не менее 150 мВт и двукратным запасом потоку коллектора. Коэффициент передачи тока базы этих транзисторов должен быть не менее 50, а лучше - больше 100. Эту схему можно несколько упростить, при этом в качестве побочного эффекта появляются новые свойства, весьма полезные для наших целей (рис. 6).

В отличие от предыдущей схемы, где транзисторные ячейки были включены параллельно, здесь использовано последовательное включение "столбиком". Пороговыми элементами являются сами транзисторы и открываются они по очереди - "снизу вверх". Но в данном случае порог срабатывания зависит от напряжения питания. На рисунке показаны примерные пороги срабатывания индикатора при напряжении питания 11 В (левая граница прямоугольников) и 15 В (правая граница). Видно, что с ростом напряжения питания больше всего смещается граница индикации максимальной мощности. В случае использования усилителя, мощность которого зависит от напряжения аккумулятора (а таких немало), подобная "автокалибровка" может принести пользу. Однако плата за это - возросшая нагрузка на транзисторы. Через нижний по схеме транзистор протекает ток всех светодиодов, поэтому при использовании индикаторов с током более 10 мА транзисторы тоже потребуются соответствующей мощности. "Клонирование" ячеек ещё более увеличивает неравномерность шкалы. Поэтому 6-7 ячеек - это предел. Назначение остальных элементов и требования к ним - те же, что и в предыдущей схеме. Слегка модернизировав эту схему, получим другие свойства (рис. 7).

В этой схеме, в отличие от ранее рассмотренных, нет светящейся "линейки" В каждый момент времени светится только один светодиод, имитируя движение стрелки по шкале. Поэтому потребление энергии минимально и в этой схеме можно применить маломощные транзисторы. В остальном схема не отличается от рассмотренных ранее. Пороговые диоды VD1 ...VD6 предназначены для надёжного отключения неработающих светодиодов, поэтому если будет наблюдаться слабая засветка лишних сегментов, необходимо использовать диоды с большим прямым напряжением.

Радиолюбитель №6 2005г